Radar/Laser Altimetry
True Terrain-Following Systems
Adding a Radar/Laser Altimetry unit to a drone enables it to precisely follow the terrain during the flight, based on the data received from the altimeter. In True Terrain-Following mode, the drone flies at low and constant AGL altitudes (up to 1 meter) without the need to import precise Digital Elevation Model (DEM) height-map.
Magnetometers and Ground Penetrating Radars (GPR) provide the ability to see below the ground. This useful feature has seen them gain wide use in mining, engineering, construction, and many other industries, even in archaeology. However, data this precise requires flying very close to the ground and maintaining a consistent height regardless of the terrain.
Usually, digital elevation model (DEM) data that represents the surface of the terrain is used for such purposes. However, this kind of data is not available for many remote areas, and when it is, it is often not accurate enough to fully realize the benefits of these technologies. For example, one of the best available commercial DEM data (WorldDEM) has a vertical precision of three meters. but if your mission the sensor needs to be two or even one meters above ground level, this data is simply of no use.
LiDAR seemingly offers a solution that creates extremely accurate terrain maps with a precision level of up to one centimeter; while the accuracy of the data sounds ideal, for a drone mission it also means a lot of wasted time. Missions based on LiDAR data have too many waypoints (we’re talking hundreds and hundreds). Therefore following a LiDAR-mapped area of terrain precisely would involve flying over the area time and time again. And that’s without mentioning the drain on the batteries.
Why not use actual terrain information instead of relying on sub-optimal pre-existing data? That was the game-changing thinking behind a new integration solution brought onto the market by SPH Engineering, which provides unmanned systems integration services and software development.
The System

First, the radar altimeter gathers an uninterrupted data flow by measuring the distance to the surface of the terrain.
Second, the onboard computer adjusts the drone flight height accordingly. As it uses actual data, rather than pre-existing information, this mode is called True Terrain Following.

True Terrain Following mode requires no more than two waypoints on each survey line, thus sparing you from unnecessary interruptions to missions. The operator just needs to set the desired flight height and speed and activate the True Terrain Following mode. The rest of the work will be done automatically.

UAV
DJI M600/M600 Pro (incl.RTK)
DJI M210/M210 v2 (incl.RTK)
(coming soon) DJI M300
DJI A3 (custom built)
Pixhawk with ArduCopter
Altimeter
Radar altimeter (can be integrated for special applications)
Onboard computer UgCS SkyHub
Ground control software UgCS
One of the main components of the integrated system, enabling efficient survey planning is UgCS – flight planning software providing tools for easy creation and calculation of flight paths, and interpretation of acquired data in a user-friendly manner.

How Can We Help?
We approach every project as a partnership. It’s our goal to develop solutions that directly meet the challenges of our clients operations. We achieve this by working alongside our clients to deliver tailored drone services that leverage the incredible potential of drone technology. Let’s talk.
Our Partners

ALTOMAXX IS A LEVEL 2 DISTRIBUTOR, PARTNER AND TRAINER OF SPH ENGINEERING, THAT DEVELOPED THE UGCS LINE OF EQUIPMENT